

HYDRAULIC PUMPS

Bulletin CIG-96

efficient unit: simple design like conventional gear pumps, high pressure ratings up to 5000 psig like piston-type pumps, and low noise levels like screw-type pumps. In addition, CIG offers the following advantages:

- Low noise
- Low pressure ripple
- Low stress on pump components
- Low systems cost
- □ High efficiency
- High speed capability
- Few moving parts
- Multiple pump configurations on a common shaft
- □ Long life
- Compatible with water glycols, phosphate esters, inverts, 95/5, and other special fluids

WHAT LOW NOISE LEVELS CAN MEAN TO YOU

Perhaps the most important benefit provided by CIG pumps is reduced noise levels—ON THE AVERAGE OF 20 to 30 db(A) LESS THAN CONVENTIONAL HIGH-PRESSURE PUMPS AT FULL PRESSURE AND HIGH OPERATING SPEED. CIG IS QUIETER THAN THE ELECTRIC MOTOR DRIVING THE PUMP. Reduced noise levels result in system cost savings.

A few of these savings are:

- No acoustic enclosures
- □ No "hiding" of the pump
- No lengthy remote piping
- No special room to contain hydraulic pump noise.

Other design characteristics of CIG allow additional system cost savings:

- No booster pump required, even at 3600 rpm
- Smaller accumulators
- □ Longer pump life
- Reduced cost for electric motors
- No compromise in sizing or selecting ... 54 single models and over 1300 double-pump combinations.

CIG offers the opportunity of using hydraulics in applications previously not suited because of high noise levels or various cost-limiting factors. Accordingly, CIG not only meets, but far exceeds, the noise level requirements of OSHA relating to industrial in-plant environmental conditions.

New Family

of Rugged, Reliable, High-Pressure Hydraulic Single and Double Pumps with Silent, Efficient, Ripple-Free Performance.


CIG is based on the patented Truninger system QT[™] design from Switzerland with all units manufactured under license in the United States by the IMO Pump Division of Imo Industries Inc. Performance is field proven with thousands of units delivered in both Europe and the United States.

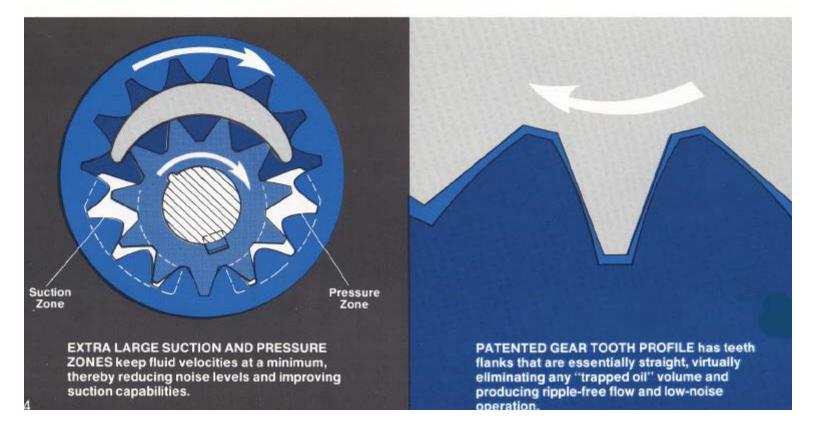
Single pumps are available in 54 different models and double pumps are: available in over 1300 different combinations. Single units range in flows from 1 to 125 gpm with continuous pressure ratings up to 5000 psig.

A PUMP WITH THE FEATURES YOU'VE BEEN LOOKING FOR.

CIG offers the best features of other types of hydraulic pumps in one single,.

Principles of CIG

PATENTED INTERNAL GEAR DESIGN


The positive-displacement internal gear design of the pump consists of a single shaft that runs through the center of the pump housing driving a pair of star-shaped gears for each stage or element of the pump. The design is extremely simple and modular, since there are only two moving parts per stage. A tie rod design allows the "stacking" of these modular stages for increased pressure ratings. Modular design of the pump makes it possible to offer 54 single models and over 1300 double pump combinations-one of the largest, if not the largest, selections in the industry.

CIG features extra large suction and discharge areas; fluid velocities are kept low and pressure rise-times are long, which helps reduce noise levels. CIG's suction capabilities are excellent, and along with its self-priming characteristics, needs no booster pump, even at the high rotational speeds. The design of the suction area of the pump is such that the flow of the oil into the unit is in an axial direction, which enables the pump to fill smoothly and reduce the possibility of cavitation. The unique characteristic of CIG's internal gear design is the patented gear tooth profile. Tooth flanks on the pinion are essentially straight, a factor which—for all practical purposes, eliminates any "trapped oil" volume. Thus, pressure pulsations are eliminated, resulting in ripple-free and low-noise operation.

CIG IS WELL SUITED TO MANY APPLICATIONS

Because of its many desirable features, CIG is a "natural" for a wide variety of high-pressure hydraulic applications, particularly for in-plant industrial environments.

- Metalworking and machine tools.
- Die-casting machines.
- Injection-molding equipment.
- Hydraulic presses.
- Automated processing equipment.
- Material handling equipment.
- Testing machines.
- Packaging machinery.
- Mining equipment.
- Mobile equipment.
- Medical apparatus.
- Computer equipment.
- Marine hydraulics.
- Extrusion presses.
- Foundry equipment.
- Stage machinery.
- ...Yourown.

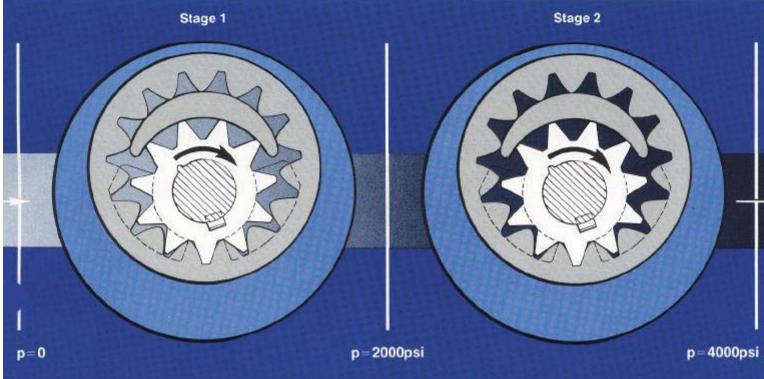
Means Longer Life

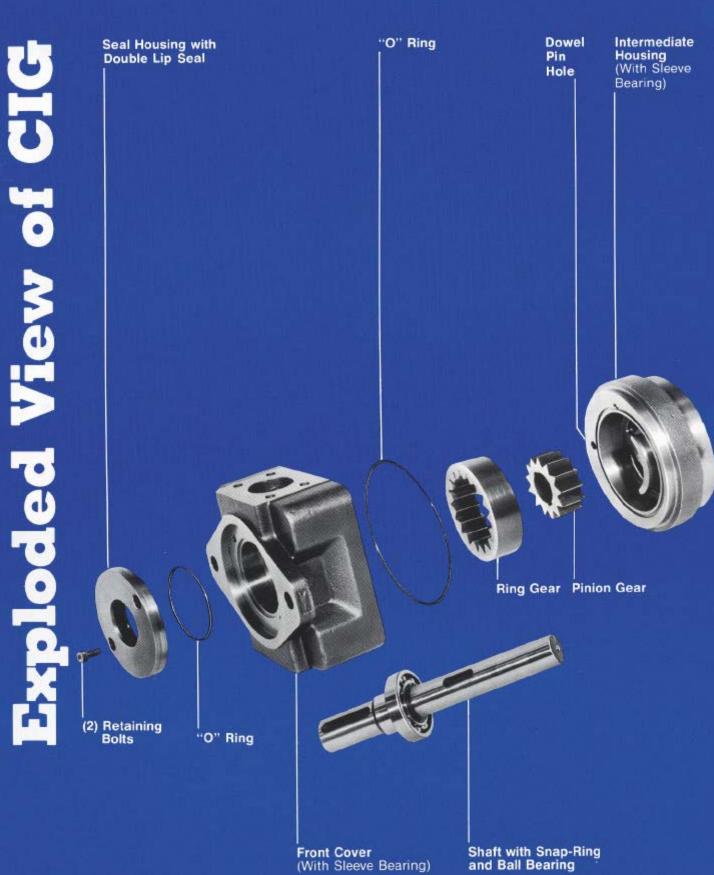
THE FEATURES OF MULTI-STAGING AND MULTIPLE PUMP CONFIGURATIONS.

Since a common shaft runs through the center of the pump body, it easily lends itself to multi-staging and multi-section configurations, or "piggybacking."

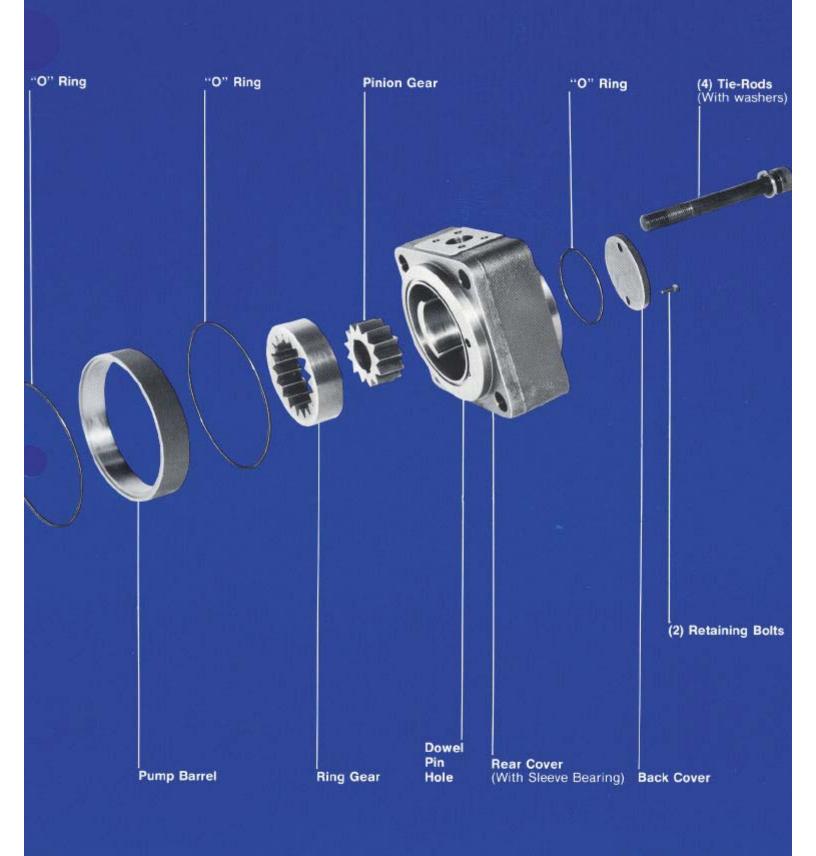
The multi-stage stacking of the modular CIG elements determines pressure levels. CIG 1000-psi and 2500-psi units are each of a singlestage design. The 4000-psi units are of a multi-stage design, in which two pump stages, each rated at 2000-psi are stacked in series. An additional stage may be added to obtain 5000 psig continuous pressure. Fluid flows from the outlet of one stage to the inlet of the next stage, and each stage participates equally in pumping against the discharge pressure. The fact that each stage shares half the pressure load, reduces stresses on pump components-thus increasing pump life.

Double-pump configurations are two hydraulically independent pumps, arranged on a common drive shaft, with each pump having a separate discharge and sharing a common suction. Thus there are over 1300 different combinations available for double-pump configurations. Such configurations are particularly desirable for applications such as presses, molding equipment, and processing systems in which pressures and flow rates must be tailored independently for an optimum work cycle performance.


Pages 14 and 15 of this brochure describe in more detail doublepump configurations and contain a chart for selection of double-pump combinations.


Because the design of the CIG is so simple, it offers you many advantages—among them, longer life and silent operation.

Smooth and efficient operation is inherent in the hydrodynamic internal gear design of CIG. All internal parts float on a film of fluid. There's minimal wear and tear and in operation, with no metal-to-metal contact between the stationary and moving elements of the pump.

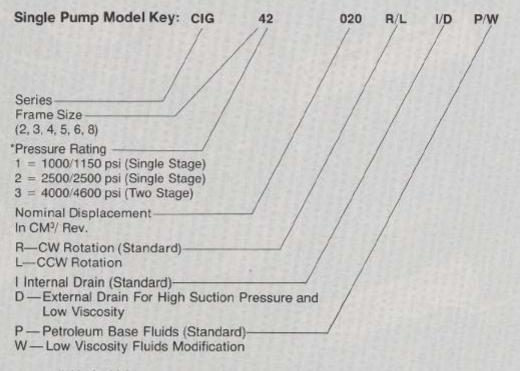

Just compare the number of moving parts in CIG with that of any conventional high-pressure pump. CIG has only two moving parts per stage. In a 4000-psi unit, that means only four moving parts (five counting the shaft). Simply put, there are fewer moving parts to worry about.

Not only are there fewer parts, but because of the unique design principle—there's less wear on these parts when compared to conventional pumps with the same pressure ratings.

Front Cover (With Sleeve Bearing)

pecifications Material

of CIG Single and Double Pumps


FRONT & REAR COVERS — DUCTILE IRON BACK COVER — ALUMINUM SEAL HOUSING — ALUMINUM INTERMEDIATE HOUSING — DUCTILE IRON (Two-stage Pumps only) RING GEAR — PEARLITIC GRAY IRON PINION GEAR — STEEL (NITRIDED) SHAFT — STEEL (NITRIDED) PUMP BARREL — STEEL (Two-stage pumps only) O-RINGS — VITON SHAFT SEALS — VITON INNER SEAL, BUNA OUTER SEAL SLEEVE BEARINGS — TEFLON COATED BRONZE INTERMEDIATE FLANGE — DUCTILE IRON (Double-pumps only)

Shown is the typical flow path of a two-stage CIG.

CIG Series Single Pump Configurations

CIG-XI is a single-stage pump for lower pressure applications, with continuous pressure up to 1000 psi and peak pressures up to 1150 psi. Flows are available from 3 gpm to 125 gpm in 18 different models. CIG-X2 is a single-stage pump for medium pressure applications with continuous and/or peak pressures up to 2500 psi. Flows are available from 1 gpm to 115 gpm in 18 different models. CIG-X3 is a two-stage pump for high pressure applications with continuous pressures up to 4000 psi and peak pressures up to 4600 psi. Flows are available from 1 gpm to 115 gpm in 18 different models.

*Additional stages are available for higher pressures or lower viscosity fluids.

Notes:

- Standard single units are supplied with clockwise rotation, Viton and buna shaft seals, internal drain, petroleum base design, and Viton "O" rings.
- Modifications for low viscosity fluids include sealed ball bearing and external drain.
- Viton shaft seals are available for phosphate ester fire resistant fluids.
- Couplings, foot-mounting brackets, and flange-mounting brackets are available from IMO Pump Division upon request.

CIG Single Series Pumps Are Available in Three Basic Pressure Ranges, Six Frame Sizes, Twenty-One Different Displacements, Fifty-Four Single Pump Models.

CIG PRESS	URE R	ANGE			XI		X2		X 3	X2 & X3	
CONT. RAT	ED PRI	ESSUR	E		1000 PS	81	2500	PSI	4000 1		
PEAK PRE	SSURE	*1			1150 PS	31	2500	PSI	4600 1		
DISPLACE- MENT PER REV.	AT R	*2 LIVERY ATED PI 1750 RF	RESS.	MODEL	HP*2	SHAFT RPM MAX / MIN	MODEL	HP*3	MODEL	HP*5	SHAFT RPM MAX / MIN
.31	AL	1.4	1.6	NUMBER	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MINA RUN	22005	3.9	23005	5.9	5700/1150
.38		2.0	2.2				22006	4.4	23006	7.3	5700/1150
.48	1	2.7	2.8		11.		22008	5.6	23008	9.0	5700/1150
.61	3.7	3.2	3.5	21010	2.8	4500/1150	32010	7.4	33010	11.5	4500/ 900
.77	4.9	4.4	4.7	21012	3.6	3600/1150	32012	9.0	33012	14.5	4500/ 900
.95	6.2	5.6	5.9	21016	4.5	2900/1150	32016	11.1	33016	17.9	4500/ 900
1.24	7.9	7.1	7.5	31020	5.9	3600/ 900	42020	14.4	43020	23.4	3600/ 700
1.53	10.1	9.1	9.6	31025	7.3	2900/ 900	42025	17.6	43025	29.0	3600/ 700
1.97	13.3	12.0	12.6	31032	9.2	2300/ 900	42032	23.0	43032	37.2	3600/ 700
2.39	16.2	13.8	15.4	41040	11.2	2900/ 700	52040	27.8	53040	45.0	2900/ 600
3.08	21.2	19.5	20.2	41050	14.6	2300 700	52050	36.0	53050	58.2	2900/ 600
3.87	27.2	25.0	25.8	41063	18.3	1800/ 700	52063	45.0	53063	73.2	2900/ 600
4.89	34.4	31.4	32.5	51080	23.1	2300/ 600	62080	57.5	63080	92.4	2300/ 500
6.16	43.6	40.2	41.5	51100	29.1	1800/ 600	62100	71.5	63100	116.3	2300/ 500
7.60	54.5*	50.8	52.0	51125	35.5**	1450/ 600	62125	89.5	63125	143.8	2300/ 500
9.93	71.1	67.0	68.0	61160	47.0	1800/ 500	82160	114.0	83160	187.6	1800/ 400
12.26	88.6**	82.0	84.0	61200	57.3**	1450/ 500	82200	142.0	83200	232.	1800/ 400
15.18		103.0	105.0				82250	176.0	83250	287.	1800/ 400
	At	1150 RI	M								
15.18		72.5		61250	47.5	1150/ 500					
19.85	1	95.1		B1315	62.0	1450/ 400					
24.52		118.0		81400	76.0	1150/ 400					
						500 C 400	and the second second second				

900/ 400

30.36 Notes:

 Peak pressure is defined as a Duty Cycle not to exceed Continuous Rated Pressure for more than 20 seconds per minute.

81500

93.0**

*2 Delivery is at Continuous Rated Pressure and Fluid Viscosity at 140 SSU.

147.0**

- H.P. Consumption is at Continuous Rated Pressure at stated RPM and Fluid Viscosity of 140 SSU.
- For viscosity of less than 70 SSU, and more than 1500 SSU, please contact IMO Pump Division.
- Suction Pressure—7 psig maximum. (For suction pressure in excess of 7 psig, add D modification.)

Suction Lift—5" Hg to 7" Hg Vacuum at typical operating speeds of 1750 and 1150 RPM, respectively.

- Maximum continuous operating temperature is 180 degrees F.
- 7. Recommended iniet filtration for standard hydraulic fluid is 74 Micron.

A return line filtration of 10 Micron is recommended.

- 8. For operating conditions not in the parameters above, contract IMO Pump Division.
- Inlet must be pressurized to 10 psi to operate at these speeds.

CIG Single Pump Dimensional Drawings DRAWING A DRAWING B DRAWING C CIG X1 X CIG X2 X CIG X3 X 1000 psi (CONT.) 2000 psi (CONT.) 4000 psi (CONT.)* 1150 psi (PEAK) 2300 psi (PEAK) 4600 psi (PEAK)* 0

S = Suction Port

P = Pressure Port

*NOTE: For services above 3000 psig, it is recommended that a discharge port socket weld adapter package (5000 psig service) be purchased with each pump. Each socket weld adapter package, available from IMO Pump Division consists of a socket weld adapter, Viton O-ring, socket head capscrews (Grade 5 or better) and spring washers. Flange sizes, order symbol number and capscrew prestress torque values are listed below:

	11/2	11/4	1	3/4	1/2	FLANGE SIZE (INCH)
27X1 Q84027	Q64027X1	Q54027X1	Q44027X1	Q34027X1	Q24027X1	ORDER SYMBOL
8 118	118	67	50	50	20	CAPSCREW PRESTRESS TORQUE VALUE LBS. FT.
	11			1		TORQUE VALUE LBS. FT. TORQUE VALUES ARE FOR

CIG Single Pump Dimensions

FRAME SIZE		ME SIZE		2		3			4				5			6	-	8		
-		MP TYPE CIG	21	22	23-3	31	32	33 3	41	42	43	51	52	53 3	61	62	63.0	81	82	83'3
-		ENSIONAL			Ed									44		UC.			06	94
		AWING	A	B	c	A	8	С	A	в	C.		8	C	A	8	C	A	в	c
	PO	RT*2 E 4-BOLT		1"			134"		176"			2			21/2			3"		
		ESS. PORT*2 E 4-BOLT		¥2"		W .			e.			11/4*			135*					
	A		4.65		118	5.19		132	6.69	1	170	8.34		212	10.51		267	12.9	1	330
-	в	SAE	3.937 1			4.173 106			5.748 146		7.12	7.125 181		9.01	15	229	11.0	-1		
	С		.35	5	9	.433 11			.551 14			709 18			.866 22			1.03	24	26
	1		1.73	5	44	1.968 50			2.677 68		3.622 92		92	3.622 92		4.606		117		
~-	K		2.994 76 6.50 7.88		76	3.462 88			4.409 112		5.670 144		6.024 159			7.560		799		
Ido	1	(INCHES)			7.88	7.72		9.49	9.49 9		11.69	11.81		14.57	13.54		17.08	18.77		21.34
m o	-	(METRIC)	ţ,	65	200	1	96	241	2	41	297	3	00	.370	344 434		434	4.26		542
IMU	M	(INCHES)	0	2.08	3.47	0	2.48	4.25	0	2.99	5.12	0	3.62	6.38	0	4.33	7.87	0	5.55	10.07
E.	IVI	(METRIC)	0	53	88	0	63	108	0	76	132	0	92	162	0	110	200	0	141	256
	N	(SAE)	2.48		-1	3.250 3.248 (SAE A)		4.000 3.998 (SAE B)		SAE B)	5.000 4,998 (SAE C)		SAE C)	6.600 5.990 (SAE D)			7.874 7.872		4	
	0		.47		12	.47		12	.63		16	.79		20	.95		24	1.18		30
-	Т		3.74		95	4.53		115	5.70		145	7.09		180	8.82		224	10.87		276
_	۷		.236 6		6	.236 6		.275		- 7	.275		7	.275		7	.35	4	9	
	Z	vanse St	1.97		50	2.36		60	2,95		75	3.66		93	4.53		115	5.55		141
	D		.78		20	.98		25	1.25		32	1.57		40	1.968		50	2.55		65
E.	D	(TOL.)	1.000		+.009 004	000		+.009	+.000		+.011 005	000		+.071 085	+.000		+.011 005	+,000 -,000		+:012 -:002
SHAI	E		1.413	7	36	1.653		42	2.28	3	50	3.228		82	3.228	1	82	4.13	4	105
S	F		.23(6	6	.313	5	8	.39	4	10	.472	2	12	.55	1	14	.79	8	18
	G		.88	6	22.5	1.10	1	28	1.37	8	35	1.693	1.4	43	2.106	12.42	59.3	2.71	6	69
15	.В.		15	15	19	25	25	33	47	47	62	90	90	117	165	165	227	320	320	440
3K	G.		6.5	6.5	8.5	11.5	11.5	15	21.5	21.5	28	47	47	53	75	75	183	145	145	200

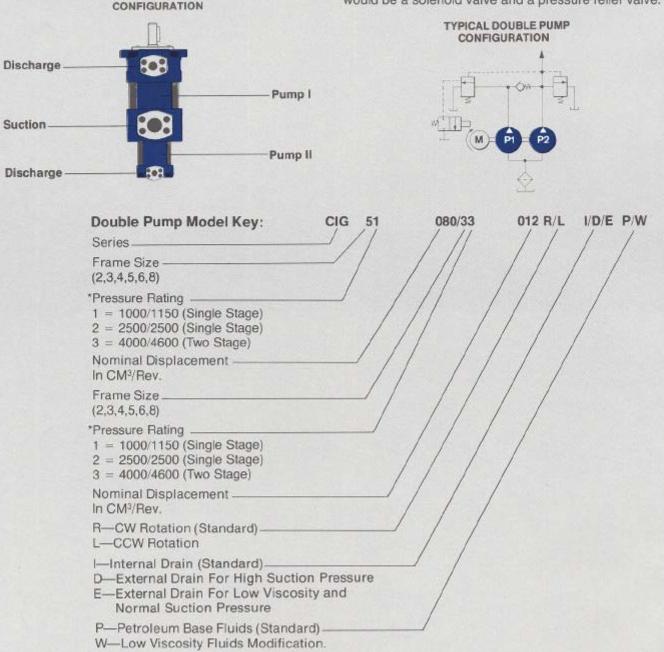
ENGLISH DIMENSIONS = INCHES METRIC DIMENSIONS = MILLIMETERS

NOTES:

*1. There is NO SAE standard existing on this Dimension for Pump Frame Sizes 2 and 8.

*2. SAE 4-Bolt Port Pads have UNC (inch) Bolt Threads as follows:

PORT SIZE:	1/2"	3/4"	T.	1%"	1%"
BOLT THREADS:	5/16"-18x11/2"	%a"-16x11/2"	%"-16x1%	7/16 -14x2"	1/2"-13x21/4"
PORT SIZE:	2	21/2"	3"	3%	4
BOLT THREADS:	1/2"-13x21/2"	1/2"-13x2%4"	%"-11x3"	%"-11x21/2	%"+11x2%"


*3 See Note on Page 12.

CIG Double Pump Configurations

CIG Double Pumps consist of two hydraulically independent working pumps placed on a common drive shaft. Each pump has a separate outlet port while both share a common suction port located in the center of the pump.

TYPICAL DOUBLE PUMP

High-low pump configurations are typical for hydraulic pressures and other applications where optimum flow and pressure build-up for a given work cycle is required. A high-low pump circuit essentially consists of a hydraulic circuit that can either combine the total output of both pumps or by-pass one outlet to the tank. A typical circuit consists of a check valve and an unloading valve. Other hydraulic system elements would be a solenoid valve and a pressure relief valve.

*Additional Stages are available for higher pressures or lower viscosity fluids.

NOTES:

- Standard double-pumps are supplied with clockwise rotation, Viton and buna shaft seals, internal drain, petroleum base design, and Viton "0" rings.
- Modifications for low viscosity fluids include sealed ball bearing and external drain.
- Viton shaft seals are available for phosphate ester fire resistant fluids.
- Couplings, foot-mounting brackets, and flange-mounting brackets are available from IMO Pump Division upon request.

CIG Double Pump Selection Table . . . 1,377 Possible Choices.

	Code N	umbers i	Table										P	JMF	P								
Refer to Applicable Dimensional Drawings for a Given Double Pump (Request Separately)*1 Grin A 1150 April 00155104 (Resh			1.82	1.82 2.37 3.12		3.8 5.0 6.4			8.3 10.5 13.8			16.7 22.0 28.0			35.4 45.0 56.0			73.0 90.0 113.0			122.0		
			2500	4000	1000	2500	4000	1000	2500	4000	1000	2500	4000	1000	2500	4000	1000	2500	4000	1000			
	/	GPM AT	TINUS C	1 4 0 C	22 6	23 6	21 12 15	32 ¹⁰ 12 16	33 10 15	31 8	42 25 32	43 25 32 32	44 48 88 88 88	52 55	53 48	888 51	62 100 124	63 100 125 125	61 200 200 200	82 200 250	83 200 260	81 400 500	
	1.82 2.37	2500	22	000	222								7										
	3.12	4000	23	6 8	232	233				10-1													16
	8.8 5.0 6.4	1000	21	10 12 16	212	213	211												5				
		2500	32	10 12 16	322	323	321	322															
		4000	33	10 12 16	332	393	331	332	333					The second									32
	8.3	1000	31	20 25 32	312	313	311	312	313	311													
(SHAFT-END)	10.5 13.8	2500	42	20 25 32	422	423	421	422	823	421	422									-			
HAFT	20.5	4000	43	20 25 32	432	433	431	432	433	431	432	433									13		63
-	16.7	1000	41	40 50 63	412	413	411	412	413	411	412	413	411										
HUMP	22.0 28.0	2500	52	40 50 63	522	623	521	522	523	521	522	523	521	522									
2		4000	53	40 50 63	532	533	531	532	533	531	532	535	531	532	598		<u>Mai</u>						125
	35.4	1000		80 100 125	512	513	511	512	513	511	512	513	511	512	513	511							
1	45.0	2500		89 100 125	622	623	621	622	623	621	622	523	621	622	623	821	622				-		
		4000		.80 100 125	632	633	631	632	633	631	632	630	631	632	633	631	532	633					250
	72.0	1000	NASE POL	160 200 250	612	613	611	612	613	611	612	613	611	612	613	611	612	613	611				
	73.0 90.0 113.0	2500	82	160 200 250							822	823	821	822	823	821	822	823	821	922			
		4000	83	100 200 250		100	X				832	833	831	832	893	891	932	833	851	832	839		500
	*2 99.0 122.0 118.0	1600	81	315 400 500							812	813	811	812	813	811	812	813	811	812	813	811	

- NOTES: 1. All available CIG Double Pumps are designated by the corresponding number of the dimensional drawings, available upon request.
- 12. Delivery in GPM is for 1175 for CIG-81-315 and CIG-81-400 and 900 RPM for CIG-81-500

(Pump I must always be equal to or larger than Pump II with respect to frame size.)

A Member of the COLFAX PUMP GROUP

Imo Pump

1710 Airport Road PO Box 5020 Monroe, NC 28111.5020 USA

tel +1 (704) 289 6511 fax +1 (704) 289 9273 E-mail Imo.Pump@ColfaxCorp.com Internet http://www.imo-pump.com

Quality Management System