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ABSTRACT 

The importance of normal distribution is undeniable since it is an underlying 
assumption of many statistical procedures such as t-tests, linear regression analysis, 
discriminant analysis and Analysis of Variance (ANOVA). When the normality 
assumption is violated, interpretation and inference may not be reliable or valid. The 
three common procedures in assessing whether a random sample of independent 
observations of size n come from a population with a normal N(^,<r2) distribution 
are: graphical methods (histograms, box-plots, Q-Q plots), numerical methods 
(skewness and kurtosis indices) and formal normality tests. This study compares the 
power of four tests of normality: Shapiro-Wilk (SW) test, Kolmogorov-Smirnov 
(KS) test, Lilliefors (LF) test and Anderson-darling (AD) test. Power comparisons of 
these four tests were obtained via Monte Carlo simulation of sample data generated 
from alternative distributions that follow symmetric and asymmetric distributions. 
The significance levels considered are 5% and 10%. First, critical values for power 
comparisons were obtained based on 50000 simulated samples from a standard 
normal distribution. As the SW test is a left-tailed test, the critical values are the 
100(a)111 percentiles of the empirical distributions of the SW test statistic. The AD, 
KS, and LF tests are right-tailed tests and the critical values are the lOOtl-a)411 

percentiles of the empirical distribution of the respective test statistics. Then, 10000 
samples each of size n = 10, 15, 20, 25, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 
1500 and 2000 were generated from each of the given alternative symmetric and 
symmetric distributions. The power of each test was then obtained by comparing the 
test of normality statistics with the respective critical values. Simulation results show 
that SW test is the most powerful test followed by AD and LF tests in detecting 
departures from the normality assumption while KS test is the least powerful test. 
This study also shows that LF test performs better than the KS test. For sample sizes 
« > 50, the performance of SW and AD tests are quite similar. Results also show that 
KS and LF tests require large sample size (at least 2000 or more) to achieve similar 
power with SW and AD tests. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

When carrying out statistical analysis using parametric methods, the assumption of 

normality is a fundamental concern for the analyst. As a statistician, we often 

conclude that 'the data are normal' or 'not normal' based on some test of normality 

results. For those without statistical background, this statement might be 

questionable. By definition, normal data are data that come from a population that 

has a normal distribution. The normal distribution is also referred to as Gaussian or 

bell-shaped distribution. 

If X is a random variable which comes from a population with normal 

distribution, or in notation, X~N(ji, <r2), then the probability distribution of X is 

(Hogg & Tanis, 2006), 

f(x) = ^ e - ! ^ 2 ; -oo < x < ao (1.1) 

where JU and a are the mean and the standard deviation of the distribution, 

respectively. This well-known distribution takes the form of a symmetric bell-shaped 

curve. The illustration of this distribution can be seen in Figure 1.1. As can be seen 

from the figure, the mean of the distribution is the point at the centre of the curve 
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whereas the standard deviation describes the spread of the curve or the variation of 

the data points around the mean. 
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Figure 1.1: The Shape of the Standard Normal Distribution 

The importance of normal distribution is undeniable since it is an underlying 

assumption assumed of many statistical procedures. It is also the most frequently 

used distribution in statistical theory and applications. Though it is important for 

certain statistical procedures to assume that data should come from a normal 

distribution, but in real life it is indeed impossible for the data to be perfectly normal. 

Geary (1947) suggested that in front of all statistical texts should be printed, 

"Normality is a myth. There never was and will never be a normal distribution." 

Hart and Hart (2002) agreed with Geary and emphasized that the normal distribution 

never reflects real life data since it yields values that range from minus infinity to 

-
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plus infinity. They also added that the data should only necessary to be 

approximately normal instead of perfectly normal. 

Assessing the assumption of normality is required by most statistical procedures. 

Parametric statistical analysis is one of the best examples to show the importance of 

assessing the normality assumption. Parametric statistics are those which assume a 

certain distribution of the data, usually the normal distribution. If the assumption of 

normality is violated, interpretation and inference may not be reliable or valid. Some 

of the most well-known statistical tests such as t-test, F-test and Analysis of Variance 

(ANOVA) are parametric tests. Parametric statistical analysis is more powerful 

compared to non-parametric statistical analysis. 

Since the assumption of normality is fundamental to the use of many statistical 

tests and inferences, therefore it is important to check for this assumption before 

proceeding with any relevant statistical procedures. Testing the normality of the data 

should be the first step of any analysis which requires the assumption of normality. 

Basically, there are three common ways to check the normality assumption. The 

easiest way is by using the graphical method. The normal quantile-quantile plot (Q-

Q plot) is the most commonly used and effective diagnostic tool for checking 

normality of the data. Other common graphical methods that can be used to assess 

the normality assumption include histogram, box-plot and stem-and-leaf plot. Even 

though the graphical methods can serve as a useful tool in checking normality for 

sample of n independent observations, they are still not sufficient to provide 

conclusive evidence that the normal assumption holds. This method is very 
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subjective as it lies in the eyes of the analyst. What seems 'normal' to one analyst 

may not necessarily be so for others. In fact, experience and good statistical 

knowledge are needed in order to interpret the graph. 

Therefore, to support the graphical methods, a more formal method which is the 

numerical methods and formal normality tests should be performed before making 

any conclusion about the normality of the data. Our judgement on the normality of 

the data will be much improved by combining the graphical methods, numerical 

methods and normality tests. The numerical methods include the skewness and 

kurtosis coefficients whereas for the normality tests, there are various procedures 

available for testing the assumption of normality. However, the most common 

normality test procedures available in most statistical software are the Shapiro-Wilk 

test, Kolmogorov-Smirnov test, Lilliefors test and Anderson-Darling test. The focus 

of this study is to compare the power of several normality tests via Monte Carlo 

simulation. Further discussions on these normality tests are available in the following 

chapter. The problem statement is given in Section 1.2 while the research questions 

and objectives are stated in Section 1.3 and Section 1.4, respectively. Section 1.5 

states the significance of the study while the scope and limitations are explained in 

Section 1.6. 

4 
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1.2 Problem Statement 

There are significant amount of tests of normality available in the literature. Some of 

these tests can only be applied under a certain condition or assumption. Moreover, 

different test of normality often produce different results i.e. some test reject while 

others fail to reject the null hypothesis of normality. The contradicting results are 

misleading and often confuse practitioners. Therefore, the choice of test of normality 

to be used should indisputably be given tremendous attention. The preparation of 

some guidelines will be very helpful to solve this problem. However, the guidelines 

provided in the literature especially in terms of the power of the test are still 

ambiguous and contradictory. Therefore, the purpose of this study is to provide 

knowledge and guidelines on the choice of normality tests which will be useful for 

practitioners. 

1.3 Research Questions 

This study seeks answers to the following questions: 

1. What are the characteristics of various tests of normality available in the 

statistical literature? 

2. How does the performance of Kolmogorov-Smirnov test, Anderson-Darling 

test, Shapiro-Wilk test and Lilliefors test varies among different sample sizes 

and alternative distributions? 

3. What are the guidelines that should be followed in choosing the test of 

normality? 
5 
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1.4 Objectives of Study 

The main objectives of the study include: 

1. To investigate the characteristics of the tests of normality identified in 

statistical literature. 

2. To perform a simulation study to compare the performance of the 

Kolmogorov-Smirnov test, Anderson-Darling test, Shapiro-Wilk test and 

Lilliefors test of normality. 

3. To provide guidelines to practitioners on the choice of normality test. 

1.5 Significance of Study 

The various tests of normality revealed through this study may increase the 

awareness of the practitioners on more recent and perhaps better test of normality 

than the ones most commonly used. At the end of this study, it is hoped that the 

results will be able to provide some guidelines to practitioners on the choice of test of 

normality. This study is also expected to provide a clearer idea on the test of 

normality that should be used under different sample size conditions. Finally, this 

study should be able to provide some idea to software developers such as the SAS 

Institute and SPSS Inc. on new tests of normality that should be included in their 

software. 

6 
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1.6 Scope and Limitations of Study 

Due to the time constraints, the scope of this study has been narrowed down. For the 

first objective of the study, only some normality tests that were found to be most 

well-known in the statistical literature were explained in the report. For the 

simulation study, only four most commonly available tests of normality in statistical 

software packages were considered: Kolmogorov-Smirnov test, Anderson-Darling 

test, Shapiro-Wilk test and Lilliefors test. The Monte Carlo simulation was carried 

out using FORTRAN programming language since it was the only software which 

had the subroutines for all the four tests. 

1.7 Layout of Report 

This chapter provides the background of the study and defines the problem or main 

issues which are the main concern of this study. In addition, the research questions 

and objectives are also stated. The significance as well as the scope and limitations of 

the study are also discussed. Chapter 2 presents a review of relevant literature, 

including a summarization of previous studies on normality test and the development 

of normality test statistics. Chapter 3 discusses in detail the Monte Carlo simulation 

methodology for power comparisons of the normality tests. The algorithms involved 

in this simulation study are described here. The simulation results are presented in 

Chapter 4. Some analyses to rank the power of the tests are also conducted and 

presented in this chapter. Finally, Chapter 5 includes a discussion of the results and a 

conclusion based on the findings obtained. The strategy for assessing normality and 

recommendations for future research are also proposed in this final chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

There are nearly 40 tests of normality available in the statistical literature (Dufour et 

al., 1998). The effort of developing techniques to detect departures from normality 

has begun as early as the late 19th century. This effort was initiated by Pearson 

(1895) who worked on the skewness and kurtosis coefficients (Althouse et al, 1998). 

In 1900, Pearson extended his work and introduced the chi-square test of normality. 

Kolmogorov and Smirnov then introduced the Kolmogorov-Smirnov test of 

normality in 1933. Conover (1999) stated that the Cramer-von Mises test was 

developed based on the contributions by Cramer (1928), von Mises (1931) and 

Smirnov (1936). In 1954, Anderson and Darling proposed their test which was the 

modification of the Cramer-von Mises test (Farrel & Stewart, 2006). 

According to Yazici and Yolacan (2007), another test of normality was proposed 

in 1962 which was called the Kuiper test. This was followed by the introduction of 

the Shapiro-Wilk test in 1965. In 1967, the Kolmogorov-Smirnov test was modified 

by Lilliefors. Lilliefors test of normality differs from that of the Kolmogorov-

Smirnov whereby the parameters of the hypothesized distribution are estimated 

rather than initially specified (Abdi & Molin, 2007). 
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Then, in 1971, D'Agostino proposed an omnibus test for moderate and large size 

samples, or widely known as D'Agostino test. This test is similar to the Shapiro-Wilk 

test which is based on regression (Coin and Corradetti, 2006). However, it requires 

no table of weights and it can be used for sample size of more than 50 (D'Agostino, 

1971). Shapiro and Francia (1972) then developed another test of normality which 

was a modification of the Shapiro-Wilk test. The D'Agostino-Pearson (1973) test 

that took into consideration both the skewness and kurtosis values was proposed in 

the following year. Another test of normality which was known as Vasicek test 

emerged in 1976. This test was constructed based on the sample entropy of the data. 

Jarque-Bera test which was also based on skewness and kurtosis was introduced in 

1987. 

Royston (1982a) modified the Shapiro-Wilk test to broaden the restriction of the 

sample size to 2000 as the original test was only limited to sample size only up to 50. 

Royston (1982b, c) provided algorithm AS 181 in FORTRAN 66 for computing the 

SW test statistic and p-value for sample sizes 3 to 2000. Later, Royston (1992) 

observed mat Shapiro-Wilk's (1965) approximation for the weights a used in the 

algorithms was inadequate for n > 50. He then gave an improved approximation to 

the weights and provided algorithm AS R94 (Royston, 1995) which can be used for 

any n in the range 3<n<5000. Rahman and Govindarajulu (1997) proposed a 

modification of the Shapiro-Wilk test and claimed that the computation of their 

statistic was much simpler than computing Royston's (1982a) approximation. 
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In the same year, Declercq and Duvaut introduced another test which was based 

on the Hermite polynomial. The history of the test of normality discussed above is 

based on the articles acquired during the period of this study. It should be noted that 

there may be more tests of normality that emerged in between or after the period 

mentioned above. Figure 2.1 shows the development of tests of normality in 

chronological order. 

<1930's 

1930's 

1950's 

1960's 

1970's 

I980's 

1990's 

Skewness and kurtosis coefficients (1895) 
Chi-square test (1900) 

• Kolmogorov-Smirnov test (1933) 
• Cramer-von Mises test (1928,1931,1936) 

Anderson-Darling test (1954) 

Kuiper test (1962) 
Shapiro-Wilk test (1965) 
Lilliefors test (1967) 

• D'Agostino test (1971) 
• Shapiro-Francia test (1972) 
• D'Agostino-Pearson test (1973) 
• Vasicek test (1976) 

• Jarque-Bera test (1987) 

Modified Shapiro-Wilk - Royston (1995) 
Modified Shapiro-Wilk - Rahman and Govindarajulu (1997) 
Hermite test (1997) 

Figure 2.1: The Development of Tests of Normality in Chronological Order 
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